Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS One ; 18(5): e0285861, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2315260

RESUMO

A novel multiplex loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography was developed for the simultaneous detection of three important respiratory disease-causing viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus. Amplification was performed at a constant temperature, and a positive result was confirmed by a visible colored band. An in-house drying protocol with trehalose was used to prepare the dried format multiplex LAMP test. Using this dried multiplex LAMP test, the analytical sensitivity was determined to be 100 copies for each viral target and 100-1000 copies for the simultaneous detection of mixed targets. The multiplex LAMP system was validated using clinical COVID-19 specimens and compared with the real-time qRT-PCR method as a reference test. The determined sensitivity of the multiplex LAMP system for SARS-CoV-2 was 71% (95% CI: 0.62-0.79) for cycle threshold (Ct) ≤ 35 samples and 61% (95% CI: 0.53-0.69) for Ct ≤40 samples. The specificity was 99% (95%CI: 0.92-1.00) for Ct ≤35 samples and 100% (95%CI: 0.92-1.00) for the Ct ≤40 samples. The developed simple, rapid, low-cost, and laboratory-free multiplex LAMP system for the two major important respiratory viral diseases, COVID-19 and influenza, is a promising field-deployable diagnosis tool for the possible future 'twindemic, ' especially in resource-limited settings.


Assuntos
COVID-19 , Orthomyxoviridae , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , RNA Viral/análise
2.
Inflamm Regen ; 42(1): 53, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: covidwho-2139785

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. METHODS: To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. RESULTS: Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as "estrogen signaling pathway," "p160 steroid receptor coactivator (SRC) signaling pathway," and "transcriptional regulation by STAT" were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. CONCLUSIONS: Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes.

3.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Artigo em Inglês | MEDLINE | ID: covidwho-2112643

RESUMO

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Hemaglutininas , Anticorpos Antivirais , Vacinação , Testes de Inibição da Hemaglutinação , Vacinas de Produtos Inativados , Macaca fascicularis , Vírion , Imunoglobulina A , Imunoglobulina G , Nucleoproteínas
4.
BMC Infect Dis ; 22(1): 572, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1910275

RESUMO

BACKGROUND: The impact of SARS-CoV-2 infection on the gut fungal (mycobiota) and bacterial (microbiota) communities has been elucidated individually. This study analyzed both gut mycobiota and microbiota and their correlation in the COVID-19 patients with severe and mild conditions and follow-up to monitor their alterations after recovery. METHODS: We analyzed the gut mycobiota and microbiota by bacterial 16S and fungal ITS1 metagenomic sequencing of 40 severe patients, 38 mild patients, and 30 healthy individuals and reanalyzed those of 10 patients with severe COVID-19 approximately 6 months after discharge. RESULTS: The mycobiota of the severe and mild groups showed lower diversity than the healthy group, and in some, characteristic patterns dominated by a single fungal species, Candida albicans, were detected. Lower microbial diversity in the severe group was observed, but no differences in its diversity or community structure were detected between the mild and healthy groups. The microbiota of the severe group was characterized by an increase in Enterococcus and Lactobacillus, and a decrease in Faecalibacterium and Bacteroides. The abundance of Candida was positively correlated with that of Enterococcus in patients with COVID-19. After the recovery of severe patients, alteration of the microbiota remained, but the mycobiota recovered its diversity comparable to that of mild and healthy groups. CONCLUSION: In mild cases, the microbiota is stable during SARS-CoV-2 infection, but in severe cases, alterations persist for 6 months after recovery.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Enterococcus , Fezes/microbiologia , Humanos , SARS-CoV-2
5.
Viruses ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1481022

RESUMO

Systemic symptoms have often been observed in patients with coronavirus disease 2019 (COVID-19) in addition to pneumonia, however, the details are still unclear due to the lack of an appropriate animal model. In this study, we investigated and compared blood coagulation abnormalities and tissue damage between male Syrian hamsters of 9 (young) and over 36 (aged) weeks old after intranasal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite similar levels of viral replication and inflammatory responses in the lungs of both age groups, aged but not young hamsters showed significant prolongation of prothrombin time and prominent acute kidney damage. Moreover, aged hamsters demonstrated increased intravascular coagulation time-dependently in the lungs, suggesting that consumption of coagulation factors causes prothrombin time prolongation. Furthermore, proximal urinary tract damage and mesangial matrix expansion were observed in the kidneys of the aged hamsters at early and later disease stages, respectively. Given that the severity and mortality of COVID-19 are higher in elderly human patients, the effect of aging on pathogenesis needs to be understood and should be considered for the selection of animal models. We, thus, propose that the aged hamster is a good small animal model for COVID-19 research.


Assuntos
Injúria Renal Aguda/patologia , Coagulação Sanguínea , COVID-19/complicações , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2 , Sistema Urinário/patologia , Injúria Renal Aguda/virologia , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus/virologia , Transcriptoma , Sistema Urinário/virologia , Células Vero , Carga Viral , Replicação Viral
6.
Viruses ; 13(6)2021 05 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1273516

RESUMO

Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Medicina de Precisão , Adjuvantes Imunológicos , Tomada de Decisão Clínica , Gerenciamento Clínico , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/classificação , Influenza Humana/epidemiologia , Medicina de Precisão/métodos , Vigilância em Saúde Pública , Pesquisa , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA